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SUMMARY

A fundamental question about the neural correlates
of attention concerns the earliest sensory processing
stage that it can affect. We addressed this issue by
recording magnetoencephalography (MEG) signals
while subjects performed detection tasks, which
required employment of spatial or nonspatial atten-
tion, in auditory or visual modality. Using distributed
source analysis of MEG signals, we found that, con-
trary to previous studies that used equivalent current
dipole (ECD) analysis, spatial attention enhanced the
initial feedforward response in the primary visual
cortex (V1) at 55–90 ms. We also found attentional
modulation of the putative primary auditory cortex
(A1) activity at 30–50 ms. Furthermore, we repro-
duced our findings using ECD modeling guided by
the results of distributed source analysis and sug-
gest a reason why earlier studies using ECD anal-
ysis failed to identify the modulation of earliest V1
activity.

INTRODUCTION

Our senses are continuously flooded by stimuli, so much so that

we lack the neuronal resources to exhaustively analyze them all.

Attention is the umbrella term for mechanisms that select and

focus our brain resources on the subset of stimuli that are either

perceptually salient or relevant to the current behavioral goal. At-

tention facilitates perceptual processing of the selected sensory

stimuli by modulating the neural processing of incoming sensory

signals (Posner and Dehaene, 1994). Notably, selective attention

enhances brain responses elicited by attended stimuli (Kanw-

isher and Wojciulik, 2000; Kastner and Ungerleider, 2000).

Detecting the presence or absence of a stimulus in a target lo-

cation is an essential task for survival. In order to facilitate the

detection, attention may be voluntarily directed to selected loca-

tions in space. A fundamental question about the brain mecha-

nisms of this spatial selective attention, which can operate in

both auditory and visual modalities, concerns the earliest sen-

sory processing stages that it can affect (Hoormann et al.,

2000; Martinez et al., 1999; Noesselt et al., 2002). In selective lis-

tening tasks, the earliest modulation of auditorily evoked electri-

cal and magnetic responses by the selective attention to one ear
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has been identified in the 20–50 ms poststimulus time interval

(Rif et al., 1991; Woldorff et al., 1993). Using ECD analysis of

MEG signals, the source of this modulation has been localized

in the vicinity of Heschl’s gyrus. The estimated location (Rade-

macher et al., 2001) and latency range (Godey et al., 2001) of

this modulation strongly implicate A1 in its generation and

suggests an involvement of selective attention at the initial

stages of auditory cortical processing (Hillyard et al., 1998). Ear-

lier studies of visual attention have suggested that directing

attention to a selected region of the visual field enhances the

visually evoked P1 component (onset �70 ms poststimulus),

but does not affect an earlier C1 component (onset �50 ms).

By modeling the neural sources of the C1 and P1 ERP compo-

nents with dipoles located in the striate and extrastriate visual

cortices, respectively, studies concluded that the initial feedfor-

ward response in V1 is not affected by attention (Clark and Hill-

yard, 1996; Hillyard and Anllo-Vento, 1998; Mangun et al., 2001;

Martinez et al., 1999; Woldorff et al., 1997, 2002). In this view,

visual information processing is first modulated by attention at

subsequent stages, in V2 (Woldorff et al., 2002) or V3 (Martinez

et al., 1999). Whereas, activity in V1 is modulated at later laten-

cies (140–250 ms), by means of delayed feedback from extrastri-

ate visual areas (Di Russo et al., 2003; Martinez et al., 2001;

Noesselt et al., 2002).

A recent study in monkeys (McAlonan et al., 2006) has shown

that activity in the thalamic reticular nucleus, which has been

hypothesized to control the ‘‘attentional searchlight’’ (Crick,

1984), is enhanced by visual attention at �25 ms after stimulus

onset. Such a short latency is temporally well tuned to influence

early visual responses in the lateral geniculate nucleus (LGN)

(Maunsell et al., 1999), which is the main visual thalamic relay.

If the thalamic reticular nucleus affects early visual processing

in the LGN, as its anatomical location and direct projections

(Crick, 1984; Guillery et al., 1998) suggest, then one may expect

that the earliest V1 response will also be affected by attention,

contrary to the conclusions of the earlier ERP and MEG studies

(Clark and Hillyard, 1996; Di Russo et al., 2003; Hillyard and

Anllo-Vento, 1998; Mangun et al., 2001; Martinez et al., 1999,

2001; Noesselt et al., 2002; Woldorff et al., 1997, 2002). Interest-

ingly, attentional modulation, with larger magnitude than in V1,

has been found in the human LGN using fMRI (O’Connor et al.,

2002). Furthermore, several studies (Kastner et al., 1999; Ress

et al., 2000; Shibata et al., 2007; Silver et al., 2007) have shown

that the activity in V1 even before the stimulus presentation can

be affected by cueing subjects to attend to a particular location

in the visual field.
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The results of the aforementioned EEG and MEG studies,

concerning the lack of attentional influence on the initial stage

of visual sensory processing, may have been in part biased by

the methods of data analysis. In these studies, current di-

poles, either singly or in mirror-symmetric pairs, were fitted

to each ERP or MEG signal component in sequence, over

time intervals (�30 ms wide) when the signal topography

was relatively stable (Di Russo et al., 2003; Martinez et al.,

2001). This approach is more consistent with the assumption

that early ERP and MEG signal components reflect activity of

discrete cortical generators and less so with the results of re-

cent studies showing that multiple visual areas contribute to

each ERP component (Foxe and Simpson, 2002). Particularly,

the earlier studies that have not found attentional modulation

of the initial V1 response have assumed that the C1 compo-

nent of ERP represents the V1 activity alone (Di Russo et al.,

2003), and therefore its source in the �30 ms interval (onset

�50–60 ms) was modeled with a single dipole, which was lo-

calized around the calcarine fissure. Findings from recent hu-

man (Foxe and Simpson, 2002; Poghosyan and Ioannides,

2007) and monkey (Bullier et al., 2001; Hupe et al., 2001;

Lamme et al., 1998; Schmolesky et al., 1998) experiments

have shown that most of the visual cortex is active at this

stage of visual processing, and hence a single point-like cur-

rent source is a poor model of the generators in the �50–80

ms interval. Such a modeling might lead to an inaccurate es-

timate of the V1 source location and its response amplitude in

different attentional conditions.

In the present study, we used MEG to record brain re-

sponses while subjects performed spatial or nonspatial atten-

tion tasks, in auditory or visual modality. Neural sources of the

MEG signals were identified using magnetic field tomography

(MFT) (Ioannides et al., 1990; Taylor et al., 1999), a distributed

source localization method, which together with statistical

parametric mapping (SPM) has been shown to localize the ini-

tial evoked response in V1 with an accuracy of 3–5 mm (Mor-

adi et al., 2003), and the neural sources throughout visual

cortex with within 2 mm reproducibility (Poghosyan and Ioan-

nides, 2007).

In our earlier study (Poghosyan et al., 2005), using the same

methods, we have demonstrated that foveally directed attention

to shape (feature-based visual selective attention) enhances re-

sponses in V1 within 100 ms of stimulus presentation. In the cur-

rent study, we examine the effect of spatial selective attention in

the primary auditory and visual cortices. Specifically, we deter-

mine whether or not spatial attention influences the first cortical

stage of visual information processing, namely the initial feedfor-

ward activity in V1.

We found that (1) the early response (30–50 ms) in putative A1

is tonotopically organized and is enhanced by auditory spatial

selective attention, (2) the initial feedforward response in V1 is

enhanced by visual spatial selective attention, beginning�55 ms

and peaking �70 ms poststimulus, and (3) attentional modula-

tion of the visual sensory processing starts in V1, and together

with the feedforward volley of activation spreads to V2, V3,

and other extrastriate visual areas.

We also demonstrate that this early V1 modulation can be

obtained using the ECD model, after fixing the V1 dipole to the
location identified by the MFT/SPM source analysis (‘‘MFT/

SPM guided’’ dipole fit). An ‘‘unguided’’ dipole fit, however, failed

to identify the early V1 modulation.

RESULTS

Five subjects were presented with a random sequence of

auditory and visual stimuli in their left and right ears and lower

left and right visual fields, respectively (Figure 1A). Two cate-

gories of stimuli were used in each sensory modality: low (at

475 Hz, 500 Hz, and 525 Hz) and high (at 1900 Hz, 2000 Hz,

and 2100 Hz) frequency tones in auditory and checkerboards

(oriented vertically, tilted at 18� and �18� angles) and faces

(with happy, angry, and neutral expressions) in the visual modal-

ity (Figure 1B). Subjects were instructed to maintain fixation on

a central cross and respond to the covertly attended target by

extending the right index finger, as accurately and quickly as

possible. In each run, a different target was used, which required

subjects to employ a different type of attention (spatial or non-

spatial), in either auditory or visual sensory modality. In different

runs, the target was the left or right visual field (visual spatial at-

tention), checkerboards or faces (visual nonspatial attention), left

or right ear (auditory spatial attention), and high or low pitches

(auditory nonspatial attention; Figure 1C).

Performance
The mean hit rate and reaction time across subjects and runs

were 97% and 451 ms, respectively. Performance in visual tasks

was marginally better than in auditory tasks (hit rate, 99% versus

94%; F1,4 = 7.57, p = 0.051; reaction time, 437 versus 466 ms;

F1,4 = 7.34, p = 0.054). The mean hit rates were similar in the

spatial and nonspatial attention runs (96% versus 98%;

F1,4 = 0.61, p = 0.48). But the reaction times were faster in the

spatial attention runs (434 versus 469 ms; F1,4 = 8.72, p < 0.05).

Performance in terms of both hit rate and reaction time was not

different in the runs where attention was directed to left or right

side (hit rate, 97% versus 98%; F1,4 = 2.67, p = 0.178; reaction

time, 430 versus 439 ms; F1,4 = 2.14, p = 0.218).

Attentional Enhancements of MEG Signals
Following minimal preprocessing, the MEG signals were aver-

aged for each run and stimulus separately, with respect to the

stimulus onset (�100 to 200 ms). Independent of task, audi-

tory-stimulus-related average signals were characterized by

three components in 25–55 ms (M25–55), 60–120 ms (M60–

120), and 130–190 ms (M130–190) intervals (Figure 2A). These

components were prominent at the contralateral temporal sen-

sors (Figure 2B) and were stronger when the stimulated ear

was attended (Figure 2C; M25–55: F1,4 = 11.54, p < 0.03; M60–

120: F1,4 = 9.79, p < 0.03). In the visual-stimulus-related average

signals, two components distributed over the contralateral oc-

cipital sensors were identified, in 50–85 ms (M50–85) and 90–

140 ms (M90–140) intervals (Figures 2D and 2E). Just as the

auditorily evoked signal components, these components were

stronger when the stimulated visual field was attended

(Figure 2F; M50–85: F1,4 = 16.86, p < 0.02; M90–140: F1,4 =

28.88, p < 0.003). Peak latencies of signal components did not

vary with attentional condition, neither for auditory (M25–55:
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F1,4 = 1, p = 0.37; M60–120: F1,4 = 0.07, p = 0.81) nor for visual

stimuli (M50–85: F1,4 = 0.01, p = 0.91; M90–140: F1,4 = 0.0002,

p = 0.98).

Sensory-Evoked and Attention-Related Activations
in Auditory and Visual Cortices
Source analysis of averaged MEG signals for individual subjects

was performed following a procedure established in our earlier

studies (Moradi et al., 2003; Poghosyan et al., 2005; Poghosyan

and Ioannides, 2007). At first, the three-dimensional distribution

of current sources throughout the brain was estimated using

MFT (Ioannides et al., 1990; Taylor et al., 1999). Then, sensory-

evoked and spatial-attention-related brain activations were

identified using high-resolution time-varying SPM of MFT solu-

tions. Sensory-evoked activations, for each stimulus category

presented in each side, were sought by statistically contrasting

post- and prestimulus periods of MFT solutions derived from

the runs where (nonspatial) attention was drawn away to the

other sensory modality. Specifically, activations evoked by audi-

tory (visual) stimuli were used to define the auditory (visual) areas

from nonspatial attention runs where attention was drawn to

visual (auditory) stimuli. Spatial-attention-related brain activa-

tions, for each stimulus category presented in each side, were

identified by contrasting MFT solutions derived from the modal-

ity-specific spatial attention runs. That is, MFT solutions derived

from the runs where attention was directed to the stimulated side

Figure 1. Experimental Design

(A) Auditory and visual stimuli, 350 ms in duration,

were presented either in the left or right ear or the

lower left or right visual field in random order. Sub-

jects were required to respond to target stimuli

during ISI, which was randomized between 600

and 1200 ms.

(B) Four categories of stimuli (checkerboards,

faces, and low- and high-frequency tones), each

in three variations, were used. Dimensions and

presented locations of visual stimuli are shown

above the images.

(C) Subjects were required to employ spatial or

nonspatial attention, in auditory or visual sensory

modality. Subjects completed two runs for each

modality and attentional-type combination.

were contrasted with the ones where

attention was directed to the opposite

side.

The first significant (p < 0.005, cor-

rected for multiple comparisons) audito-

rily evoked activations were isolated in

the 35–45 ms interval, in the Heschl’s

gyrus contralateral to the stimulated ear

(Figure 3A). These activations were ob-

served in all subjects in response to

high-frequency tones and in four out

of five subjects in response to low-fre-

quency tones. In the fifth subject, statisti-

cally significant activations in the Heschl’s

gyrus appeared first at 60 ms. Responses in the Heschl’s gyrus of

the ipsilateral hemisphere did not reach the significance thresh-

old in any of the subjects. Centroids of the significant activations,

in each subject, were transferred to Talairach space (Talairach

and Tournoux, 1988) and were designated as centers of spherical

regions of interest (ROI) with a radius of 7 mm (mean ± SD; Talair-

ach coordinates across subjects in mm: low-frequency tones, left

A1,�46 ± 4,�18 ± 7, 7 ± 5, right A1, 53 ± 3,�16 ± 6, 8 ± 4; high-

frequency tones, left A1,�40 ± 3,�25 ± 6, 7 ± 5, right A1, 50 ± 4,

�18 ± 5, 7 ± 3). According to the published probability maps (Pen-

hune et al., 1996; Rademacher et al., 2001), the centroids of acti-

vations are in A1. Moreover, the arrangement of ROIs is in agree-

ment with the known tonotopic organization of A1 (Formisano

et al., 2003; Talavage et al., 2004), in that ROIs defined for low-fre-

quency stimuli were located anterior and lateral to that of high

frequency. Nevertheless, in recognition of the limitations of Talair-

ach coordinates and because no other converging neuroimaging

technique (e.g., fMRI) was used, we will qualify our assignment of

the generators identified in the Heschl’s gyrus as ‘‘putative A1.’’

The statistically significant auditory spatial-attention-related acti-

vations were slightly larger than the corresponding sensory-

evoked activations (Figure 3B) but were indistinguishable in terms

of latency and brain location (compare Figures 3A and 3B).

Visually evoked activations became statistically significant in

the 55–60 ms interval, in the dorsal areas of calcarine cortex,

contralateral to the stimulated visual field (Figure 4A). Then, as
804 Neuron 58, 802–813, June 12, 2008 ª2008 Elsevier Inc.



Neuron

Earliest Attentional Effects in Primary Cortices
Figure 2. Representative Examples of MEG Signals from a Single Subject
(A–C) Auditory evoked responses (high-frequency tones presented in the left ear). (A) Signals from all 151 MEG sensors overplotted together. (B) Magnetic field

topography at 38 ms obtained from the spatial attention runs where left (‘‘Attended’’) or right (‘‘Ignored’’) ear where attended. (C) Strongest standardized MEG

signals obtained from runs where auditory spatial attention was directed to left (solid blue) or right (dotted red) ear.

(D–F) Visually evoked responses (checkerboards presented in the left visual field). (D) Signals from all 151 MEG sensors overplotted together. (E) Magnetic field

topography at 58 ms obtained from the spatial attention runs where left (‘‘Attended’’) and right (‘‘Ignored’’) visual fields where attended. (F) Strongest standardized

MEG signals obtained from runs where visual spatial attention was directed to left (solid blue) or right (dotted red) visual field.

Signals shown in (A) and (D) were obtained from spatial attention runs, where right side was attended, thus they were elicited by ignored stimuli.
expected from earlier studies (Foxe and Simpson, 2002; Moradi

et al., 2003; Poghosyan and Ioannides, 2007), they spread rap-

idly to neighboring extrastriate areas. This pattern of activity

was observed in all subjects. Responses to checkerboards

and faces in the first 100 ms following the stimulus onset were

similar in terms of localization and timing. In four subjects, the

borders between V1 and V2 visual areas (the representation of

the vertical meridian) were obtained in a separate fMRI experi-

ment. In these subjects, the calcarine activations fell clearly

within the borders of V1. In all five subjects, these were the ear-

liest evoked activations and were similar in terms of location, ex-

tent, and latency. In each subject, the centroids of the significant

V1 activations, at their onset latency, were used to define spher-

ical ROIs (left V1, �9 ± 2, �80 ± 7, 9 ± 5; right V1, 8 ± 3, �82 ± 8,

8 ± 5), in the same way as for the auditorily evoked responses.

The spatial and temporal patterns of visual spatial-attention-

related activity closely resembled the visually evoked activation

patterns (Figure 4B; compare Figures 4A and 4B), including the

earliest V1 activation.

Temporal Dynamics of Attentional Modulations
To examine the temporal dynamics of attentional modulations, re-

gional activation curves (RAC) for each auditory and visual ROI
were generated from the MFT solutions derived from the modal-

ity-specific spatial attention runs (Figure 5 and 6). RAC defines

the time course of activation of the ROI along its dominant direc-

tion. The dominant direction of an ROI is the principal direction

of the current density vectors in that ROI and is calculated using

circular statistics (Fisher, 1993), taking into account both magni-

tude and direction of vectors (Ioannides et al., 2005). Two peaks,

at �40 ms and �85 ms, with opposite current directions were

evident in the grand-averaged RACs of putative A1 (Figure 5). Am-

plitudes of both peaks were enhanced by auditory spatial selective

attention. These attentional modulations were present in all sub-

jects with high statistical significance (early peak: F1,4 = 4.99,

p < 0.02; late peak: F1,4 = 26.96, p < 0.007). In addition, analysis

of variance (ANOVA) revealed significant interactions of ROI and

stimulus category (early peak: F3,12 = 6.5, p < 0.05; late peak:

F3,12 = 8.81, p < 0.05), and ROI and presentation side (early

peak: F3,12 = 11.18, p < 0.001; late peak: F3,12 = 6.62, p < 0.02).

No attention-related significant differences were found in peak

latencies (early peak: F1,4 = 0.28, p = 0.62; late peak: F1,4 = 1.35,

p = 0.3). Grand-averaged V1 RACs were also dominated by two

peaks, with opposite current directions, at �70 ms and �130 ms

(Figure 6). Similar to putative A1, both peaks were augmented

by visual spatial selective attention (early peak: F1,4 = 14.67,
Neuron 58, 802–813, June 12, 2008 ª2008 Elsevier Inc. 805
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p < 0.02; late peak: F1,4 = 10.54, p < 0.03), and no attention-related

significant differences were observed in their latencies (early

peak: F1,4 = 0.06, p = 0.82; late peak: F1,4 = 0.4, p = 0.56). Inter-

action of ROI and presentation side was significant for both peaks

(early peak: F1,4 = 22.11, p < 0.02; late peak: F1,4 = 121.98, p <

0.02). There was a marginally significant main effect of stimulus

category on the amplitude of early peak (F1,4 = 5.7, p = 0.07).

ECD Modeling of MEG Signal Sources
The key results described above were tested using MFT/SPM-

guided ECD fits. For the purpose of these tests, MEG signals of

the spatial attention runs were averaged over all stimuli of the

same sensory modality, separately for each subject, run, and pre-

sentation side. We fitted these average MEG signals in the inter-

val of 30–45 ms for auditory and 65–80 ms for visual stimuli. These

intervals were selected based on grand-averaged RACs, and the

same intervals were used for dipole fitting in all subjects. Prior to

fitting, dipoles with fixed locations were placed in the primary

Figure 3. Representative Examples of the

Earliest Auditorily Evoked and Spatial-At-

tention-Related Activations from a Single

Subject (Responses to Sounds Presented

in the Left Ear)

(A) Activations, independent of auditory spatial at-

tention, in A1 elicited by high (upper row) and low

(lower row) frequency tones, in four consecutive

time intervals. The two axial MRI slices best cover-

ing the activations are shown.

(B) Auditory spatial-attention-related activations in

response to high (upper row) and low (lower row)

frequency tones. Same MRI slices and time inter-

vals as in (A) are shown. Yellow contours encom-

pass the regions of statistically significant (p <

0.005) activations. Red color indicates the stron-

gest activated regions.

sensory cortices. For visual stimuli, a di-

pole was placed at the center of corre-

sponding V1 ROI. For auditory stimuli, it

was placed at the midpoint of putative

A1 ROIs, which were defined in response

to low and high frequency tones. To ac-

count for the rest of the MEG signal, addi-

tional dipoles, with free locations, were

seeded in the sensory-modality-specific

cortex (lateral occipital cortex for visual

and superior temporal cortex for auditory

stimuli), contralateral to the stimulus

hemispheres. Orientations of all dipoles

were allowed to vary. The two-dipole

model (one with location fixed in putative

A1, Figure 7A) produced a goodness of

fit (GOF, proportion of the measured sig-

nal variance accounted for by the model)

above 80% for the auditorily evoked

MEG signals, for all of our subjects. The

second dipole was localized to the parie-

tal cortex, in the hemisphere contralateral to the stimulated ear.

For visually evoked responses, similar GOF was obtained using

three current dipoles (Figure 7B). Two dipoles, in addition to the

fixed V1 dipole, were localized mostly to the occipital cortex, con-

tralateral to the stimulated visual field, and to the parietal cortex

contralateral to the attended visual field. Source waveforms of

the fixed putative A1 and V1 dipoles confirmed our findings,

showing attentional modulations of the early feedforward activa-

tions at about the same latencies as seen in the corresponding

RACs (Figures 7C and 7D). These modulations were evident in

the source waveforms in four out of five subjects.

The averaged data were also analyzed using procedures similar

to the one used in the earlier studies of visual spatial attention (Di

Russo et al., 2003; Martinez et al., 2001; Noesselt et al., 2002). First,

for each subject, a single dipole was localized by fitting the visually

evoked MEG signals in the time interval of 50–65 ms. In four out of

five subjects, this unguided dipole fit localized the source to the dor-

sal bank of calcarine fissure. In the fifth subject, the one dipole

model in the given interval did not produce an adequate fit (GOF
806 Neuron 58, 802–813, June 12, 2008 ª2008 Elsevier Inc.
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was less than 70%). The data of this subject were not analyzed fur-

ther using this strategy. The estimated dipole locations in the re-

maining four subjects were within the borders of V1, but were on av-

erage 11 mm (SD, 3 mm) away from the corresponding V1 ROIs

(Figure 8A, the red dipole). Then, for each of the four subjects, while

keeping the V1 dipole active, the signals in the 65–80 ms interval

were fit with another dipole, which after the fit was localized to the

contralateral dorsal extrastriate cortex (Figure 8A, the blue dipole).

In each subject, for each stimulated visual field the same dipoles

provided above 80% GOF for both runs, where the stimulated visual

field was attended and where it was ignored. Similar to earlier stud-

ies (Di Russo et al., 2003; Martinez et al., 2001; Noesselt et al., 2002),

the source waveforms showed no attentional modulation in the ear-

liest V1 response that peaked at �70 ms, while the later response

startingat�110msafter the stimulusonset was enhanced by atten-

tion (Figure 8B). Waveforms of the contralateral extrastriate dipole

peaked at�80 ms and were modulated by attention.

Because the MFT/SPM-guided and the unguided dipole fits

were performed over different time intervals and different num-

Figure 4. Representative Examples of the

Earliest Visually Evoked and Spatial-Atten-

tion-Related Activations from a Single Sub-

ject (Responses to Images Presented in the

Left Visual Field)

(A) Brain regions commonly activated by both visual

stimulus categories (checkerboards and faces), in-

dependent of visual spatial attention are shown in

four consecutive time intervals. Axial MRI slice

that best covers the activations is shown on the up-

per row. The sagittal view of the first significant ac-

tivation that was localized in the striate cortex in 55–

60 ms interval is shown below. The green lines here

indicate the V1/V2 borders (representation of verti-

cal meridian), which were obtained in a separate

fMRI experiment. The white dotted line on the axial

view shows location of the sagittal slice.

(B)Visual spatial-attention-relatedactivations (com-

mon for both visual stimulus categories). Same MRI

slices and time intervals as in (A) are shown. Yellow

contours encompass the regions of statistically sig-

nificant (p < 0.005) activations. Red color indicates

the strongest activated regions.

bers of current dipoles were used to fit

the signal, it is not straightforward to

compare these two approaches. For the

readers specifically interested in this

comparison, we have performed an addi-

tional MFT/SPM-guided dipole fit over

the same interval as in the unguided fit

(50–65 ms) and provide the results in the

Figure S1.

DISCUSSION

Main Findings
The main finding of the present study is

that spatial selective attention enhances

the early sensory-evoked feedforward re-

sponses in the primary auditory and visual cortices. In this study,

sensory-evoked brain activations were identified based on the

runs where nonspatial attention in another sensory modality

was employed. This ensured that identified regions are involved

in baseline sensory processing, maximally independent of atten-

tional processes in that sensory modality and of spatial attention

in general. Attentional modulations in each sensory modality

were obtained based on the modality-specific spatial attention

runs. Modulations at the tested latencies closely followed the

sensory-evoked activations.

The earliest significant activations were localized in the sen-

sory-modality-specific primary cortices. Responses in putative

A1 were defined based on their Talairach coordinates and pub-

lished probability maps (Penhune et al., 1996; Rademacher et al.,

2001), whereas V1 responses were defined based on V1/V2 bor-

ders obtained in separate fMRI experiments. Due to intersubject

variability, defining activations based on Talairach coordinates is

not very accurate. However, here, the latency range (Godey

et al., 2001) and the tonotopic organization (Formisano et al.,
Neuron 58, 802–813, June 12, 2008 ª2008 Elsevier Inc. 807
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2003; Talavage et al., 2004), in addition to Talairach coordinates

(Penhune et al., 1996; Rademacher et al., 2001; Talairach and

Tournoux, 1988), strongly support the A1 origin of the responses.

The spatial organization of putative A1 and V1 activations was in

complete agreement with known tonotopic (Formisano et al.,

2003; Talavage et al., 2004) and retinotopic (DeYoe et al.,

1996; Engel et al., 1997; Fox et al., 1987; Sereno et al., 1995)

maps. We found a significant effect of ROI and presentation

side interactions on response magnitude in both sensory modal-

ities. In the auditory modality, we found in addition ROI and stim-

ulus category interactions. These findings are consistent with the

tonotopic and retinotopic specificity of auditory and visual re-

sponses, respectively. The methodology used in the current

study provides very high localization accuracy (�3 mm) and pre-

cision (�1.5 mm) for sources in V1 (Moradi et al., 2003; Pog-

hosyan and Ioannides, 2007). No accuracy or precision tests

have been performed for sources in the auditory cortex. How-

ever, given the favorable location and orientation of MEG signal

generators in A1, there is every reason to expect that the meth-

odology will perform at least as well for A1 sources.

Because all of the earlier studies of spatial selective attention

used ECD source analysis, in the present study, we chose to

test our key findings using an ECD fit in two ways. First, by utiliz-

ing information about the source locations and timing obtained

from our MFT/SPM source analysis. This test confirmed our find-

ings that the initial feedforward responses in putative A1 and V1

are modulated by spatial selective attention. Second, we fol-

lowed procedures similar to the ones used in earlier studies of

visual spatial attention. Results of this test were in accordance

with earlier studies (Di Russo et al., 2003; Martinez et al., 2001;

Noesselt et al., 2002), in that they failed to identify the earliest

attentional modulation in V1.

Limitations of the Study
In our experiments, the task of the subjects was to fixate on

a central cross and in a random sequence of many different stim-

uli respond to the ones at cued location as accurately and quickly

as possible. Successful performance required covertly attending

to the target location, which the subjects were explicitly in-

Figure 5. Grand-Averaged A1 RACs

Grand-averaged RACs of left (left column) and right

(right column) A1s, generated in response to high

(upper row) and low (lower row) frequency tones

presented in the right (left column) or left (right

column) ear are shown. RACs produced from the

runs where stimulated ear was attended (solid

blue) and ignored (dotted red) are overplotted.

structed to do before each run. Near-ceil-

ing performances indicated that all sub-

jects effectively attended to the cued

location. This indication was further cor-

roborated by explicitly asking subjects

about it. After each run, they reported

that they were able to attend to the target

location, while ignoring others. Nonetheless, our experimental

design did not allow for a definitive behavioral verification of

attention, and this is a limitation of the study.

Near-ceiling performances showed that the task was not very

demanding and the attentional resources were not fully taxed,

nevertheless it was enough to significantly enhance well-defined

responses in the MEG signal and in the V1 reconstructions. A

more demanding task would very likely have produced an even

larger attentional effect (Spitzer et al., 1988). Another shortcom-

ing of the current study is the delineation of only the first repre-

sentation of the vertical meridian because of limited fMRI cover-

age. To improve the resolution, few slices were acquired to cover

only the V1/V2 borders around the calcarine fissure. The avail-

ability of only these few slices allowed us to delineate the V1/

V2 border but did not allow us to identify accurately and perform

detailed analysis for neural sources in early extrastriate cortex

(V2, V3, and V4). This prevented a more comprehensive study

of the neural mechanisms of early attentional processes.

Earlier EEG/MEG Studies of Spatial Attention
Earlier studies of auditory selective attention (Rif et al., 1991;

Woldorff et al., 1993) have documented attention-related en-

hancements of several auditorily evoked electromagnetic signal

components, with earliest modulation in the 20–50 ms interval.

The neural source of this early modulated component (20–50 ms)

has been localized to the supratemporal auditory cortex, in

the vicinity of Heschl’s gyrus. Our present results confirm and

clarify these findings by localizing the sources of auditorily

evoked MEG signals, in the 30–50 ms interval, to Heschl’s gyrus,

and showing that auditory spatial selective attention boosts this

early response.

Modulation of the initial visually evoked response in V1, iden-

tified in the current study, are apparently inconsistent with most

earlier ERP and MEG studies of visual spatial attention (see Intro-

duction). Could these apparently very different results be ex-

plained, at least in part, by differences in source analysis

methods? The current study used MFT (Ioannides et al., 1990;

Taylor et al., 1999), a tomographic source analysis method, fol-

lowed by SPM. This approach was successfully used to identify

concurrently active neural sources in general and early visual
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responses in particular (Moradi et al., 2003; Poghosyan and

Ioannides, 2007; Tzelepi et al., 2001). The earlier studies have

used ECD source analysis. The ‘‘wandering’’ of the single dipole

in the space between multiple sources was demonstrated in

early MFT studies of auditorily evoked responses (Ioannides

et al., 1993b) and in data from epileptic patients (Ioannides

et al., 1993a). The results reported here show that the early atten-

tional effect could be identified, if the dipoles were fixed at the V1

locations identified by the MFT/SPM source analysis (Figure 7D).

This early attentional effect was however absent in the source

waveforms for V1, estimated using an unguided dipole fit of

the same data (Figure 8B). Comparison of these two ECD mod-

eling approaches (Figures 7B, 7D, and 8) provides a clear exam-

ple of a slight mislocalization of V1 response that effectively

wipes out the early attentional modulation in V1.

To overcome this problem, many ERP and MEG studies have

used fMRI to assist and/or test the localization of current dipole

sources. The Talairach coordinates of estimated locations of V1

dipoles and corresponding fMRI activations reported in the pa-

pers, which found no attentional effect on the earliest V1 re-

sponse (Di Russo et al., 2003; Martinez et al., 1999, 2001; Noes-

selt et al., 2002), were on average �9 mm (SD, 2 mm) away from

each other. In our current study, a similar displacement (�11, SD

3 mm) was identified between the V1 ROIs defined in the MFT/

SPM source analysis and the locations estimated using ECD

modeling approach similar to the aforementioned studies. It is

therefore possible that the ECD source analysis used in the ear-

lier studies may be at least partially responsible for the failure to

identify the earliest attentional modulation in V1.

In the current study, attentional modulations in the recorded

MEG signals were evident from the beginning of the initial stim-

ulus-evoked responses: at �25 for auditory and �50 ms for vi-

sual stimuli. Moreover, at their peak, these modulations were

statistically significant. Though most earlier studies of visual spa-

tial attention did not report attentional effects in the recorded

EEG/MEG signals at these early latencies, in some cases a small

(probably not statistically significant) effect could be seen in

some of the traces. A number of factors, like the size and eccen-

tricity of stimuli and signal processing parameters, could affect

the latency, detectability, and the robustness of such effects.

Figure 6. Grand-Averaged V1 RACs

Grand-averaged RACs of left (left column) and

right (right column) V1s, generated in response to

images of checkerboards (upper row) and faces

(lower row) presented in the right (left column) or

left (right column) visual field are shown. RACs

produced from the runs where stimulated visual

field was attended (solid blue) and ignored (dotted

red) are overplotted.

Intracranial Recordings: Primate
Studies
Several electrophysiological studies in

monkeys (Mehta et al., 2000; Vidyasagar,

1998) have reported findings that seem to

be inconsistent with our current findings.

Specifically, using single-unit recording

techniques, Vidyasagar (1998) has observed an attention-related

increase in the firing rate of V1 neurons at 70–100 ms latencies,

whereas the earlier response component that began at �40 ms

was not modulated by attention. Mehta et al. (2000) using current

source density analysis have found that attentional modulations

occurred earlier in higher visual areas (e.g., in V4 at �100 ms)

than in V2 and V1. In this study, the stimulus-related activity in

V1 started before 50 ms, while the attentional effects were ob-

served only after 250 ms. These findings seem to support the de-

layed feedback mechanism of attention, apparently inconsistent

with our current findings. However, the two sets of results might

be reconciled using models (Crick and Koch, 1990; Niebur et al.,

2002; Niebur and Koch, 1994) that suggest increased neural re-

sponse synchronization as a mechanism for selective attention.

According to these models, selective attention increases syn-

chrony between members of neural populations that represent

an attended stimulus. This increased synchronization at early

stages of sensory processing is transformed into increased firing

rate at the subsequent stages (Alonso et al., 1996; Konig et al.,

1996; Salinas and Sejnowski, 2000; Usrey et al., 2000). Thus, en-

hanced synchrony between neurons will decrease from tempo-

rally early to late stages of attentional processing, while in paral-

lel, firing rates will increase. The studies of Vidyasagar (1998) and

Mehta et al. (2000) have investigated the attentional effects on

measures that reflect activity of individual neurons (single-unit

recordings) (Vidyasagar, 1998) or average transmembrane cur-

rents of neurons in a cortical area of a few hundred micrometers

in radius (current source density) (Mehta et al., 2000). These

measures may easily miss neural response synchronization

across many millimeters of cortical area in V1, which both their

and our visual stimuli would have activated. Therefore, atten-

tional modulations in these studies have been identified only at

later stages of sensory processing, when the firing rate of neu-

rons had increased. Conversely, MEG is very sensitive to neural

synchrony (Hamalainen et al., 1993) and therefore could detect

attentional effects at earlier stages of visual processing, if of

course synchrony indeed is a mechanism of attentional selec-

tion, as suggested by recent monkey electrophysiology studies

(Fries et al., 2001; Steinmetz et al., 2000). The study (Steinmetz

et al., 2000) was conducted as a direct test of the hypothesis
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from the Niebur and Koch (1994) model. It showed that when

monkeys performed a tactile discrimination task a majority of

neuron pairs in the somatosensory area SII fired synchronously

and, consistent with the model’s predictions, the degree of syn-

chrony varied with the monkey’s attentional state. In a study of

visual attention, Fries et al. (2001) have found that neurons in

monkey’s area V4 activated by the attended stimulus showed in-

creased gamma-band (35–90 Hz) and reduced low-frequency

(<17 Hz) synchronization compared with neurons at nearby V4

sites activated by distracters. Synchronization was modulated

by attention starting from 50 ms after stimulus onset, whereas

attentional effects on the firing rate did not begin until �450 ms.

The study of Fries et al. (2001) used spike-triggered averaging

of local field potentials (LFP) that revealed a periodicity in the

neural response synchronization that is not evident in the stimu-

lus-based average responses used in the current study. The

measurable manifestations of attentional effects in the Fries

et al. (2001) study and ours may therefore emphasize different

features of the attentional selection mechanism. It is neverthe-

less significant for the interpretation of our results that the study

of Fries et al. (2001) strongly supports a key role of synchrony in

attentional processes and that the attentional modulation of

neural synchrony precedes that of the firing rate.

Intracranial Recordings: Human Study
A recent study (Yoshor et al., 2007) using intracranial recordings

from the early visual cortex (areas V1/V2) of six human patients

with medically intractable epilepsy has explored the discrepancy

Figure 7. Dipole Modeling of MEG Signal

Sources (First Approach, MFT/SPM Guided;

Representative Examples from One Sub-

ject)

(A and B) Locations of dipoles for left (A) ear and (B)

visual field stimulations shown on coronal (left) and

sagittal (right) views of the head scheme. Prior to

fitting, location of one of the dipoles (red dipole,

pointed by an arrow) was fixed according to

ROIs identified by MFT/SPM source analysis

(see Supplemental Data). Dipole modeling was

performed separately for spatial attention runs

where the stimulated side was attended (upper

row) and ignored (lower row). (A) Two dipoles pro-

vided adequate GOF (>80%) for the auditorily

evoked MEG signals in the 30–45 ms interval

(gray interval in [C]). (B) For the visually evoked

signals, three dipoles provided adequate GOF in

the 65–80 ms interval (gray interval in [D]).

(C and D) Source waveforms of fixed (C) A1 and (D)

V1 dipoles depicted in red and pointed by arrows

in (A) and (B), respectively. Waveforms of dipoles

in the runs where the stimulated side was attended

(solid blue) and ignored (dotted red) are overplot-

ted. The gray bars indicate fitting intervals.

Figure 8. Dipole Modeling of MEG Signal

Sources (Second Approach; Representative
Examples from One Subject)

(A) Locations of sequentially fitted dipoles (50–65

ms for red dipole and 65–80 ms for blue dipole)

in response to left visual field stimulations. Coronal

(left) and sagittal (right) views of head scheme are

shown. The first dipole (red), which fit the signal in

50–65 ms interval, is localized in the striate cortex,

while the second dipole (blue; fit in 65–80 ms inter-

val) is localized in the extrastriate cortex.

(B) Source waveforms of the dipoles shown in (A).

Waveforms of V1 (left) and extrastriate (right) di-

poles in the runs where the stimulated location

was attended (solid blue) and ignored (dotted

red) are overplotted. The gray bars indicate fitting

intervals for each dipole. Similar localizations and

source waveforms were obtained for right visual

field stimulations.
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between the large attention-related enhancement of visually

evoked signals seen in human fMRI studies (Kanwisher and Woj-

ciulik, 2000; Kastner and Ungerleider, 2000; Pessoa et al., 2003)

and relatively modest attentional modulations revealed by sin-

gle-unit (Maunsell and Cook, 2002; Reynolds and Chelazzi,

2004) and LFP (Mehta et al., 2000) recordings in monkeys. The

Yoshor et al. (2007) study quantified visual spatial attention

changes over a wide interval (40–250 ms after stimulus onset).

The attentional changes identified in V1 were relatively modest,

specifically �8% increase in the stimulus-evoked response,

which was present in five out of six subjects. In only one subject

this increase was statistically significant. In the sixth subject

there was a significant attention-related decrease of cortical re-

sponse. These attentional effects were considerably lower than

the 25%–100% changes reported in fMRI studies (Gandhi

et al., 1999; Somers et al., 1999). The changes identified in our

study were in the range of 10%–20%, and the enhancement

was statistically significant in all subjects. There are at least

two reasons that may have contributed to weaker and less ro-

bust attentional modulation in the study of Yoshor et al. (2007).

First, their intracranial electrodes recorded from only an �2 mm

wide neuronal population, which might not be enough to pro-

duce a robust attentional effect. Summation of signals from a

wider area might produce more robust modulation. Second,

they recorded from epileptic patients, whose medical condition

and medication could lead to reduced attentional modulation.

Psychological Models
According to most psychological models, the attentional selec-

tion may be stimulus driven and/or goal directed. In relation to

our current findings, these models can be divided into two

groups. The first group includes purely ‘‘goal-directed’’ models,

which argue that the attentional selection is predominantly deter-

mined by the task demands (Bacon and Egeth, 1994; Folk et al.,

1992), and mixed models, where the effects of goal-directed and

stimulus-driven selections summate and jointly direct the alloca-

tion of attention (Navalpakkam and Itti, 2005; Wolfe, 1994).

Models in this group predict that the target (determined by the

current task) region of the visual field is prioritized by attentional

mechanisms in advance, and hence even the earliest sensory

evoked response should be modulated by attention. The second

group includes purely ‘‘stimulus-driven’’ models, which assert

that in visual search tasks attention is automatically directed to

physically salient sensory stimuli, irrespective of the observers’

intentions (Itti and Koch, 2000; Nothdurft, 2002; Theeuwes,

1994), and mixed models, which argue that the attentional selec-

tion is initially completely stimulus driven and later goal directed

(van Zoest et al., 2004; van Zoest and Donk, 2006). Models of the

second group imply that the initial stimulus-evoked neural re-

sponse is not affected by the attentional task. While our current

results demonstrate that the goal-directed allocation of atten-

tional resources affects the very beginning of cortical sensory

processing and hence are in line with the first group of models,

they do not directly contradict the models in the second group.

These models are based on visual search tasks, where fea-

ture-based attentional mechanisms are employed, while in our

current study the effects of spatial attention were investigated.

Evidence suggests that these two types of attentional selections
may involve different neural mechanisms (Fink et al., 1997; Gies-

brecht et al., 2003).

In summary, the initial feedforward responses in the primary

auditory and visual cortices were enhanced by spatial selective

attention, beginning at �30 ms and �55 ms, and peaking at

�40 ms and �70 ms, respectively. Attentional modulation of

visual sensory processing starts in V1 and, together with the

feedforward volley of activation, spreads through extrastriate

visual areas.

EXPERIMENTAL PROCEDURES

Subjects

Five male subjects with normal hearing and normal or corrected-to-normal

visual acuity participated in the experiment. The host institution’s ethics com-

mittee approved the study, and all the subjects gave their informed written

consent after all procedures were explained to them before the experiment.

Stimuli and Task

Auditory and visual stimuli were delivered to subjects while they were seated in

a magnetically shielded room. Sound stimuli were low (at 475 Hz, 500 Hz, and

525 Hz) and high (at 1900 Hz, 2000 Hz, and 2100 Hz) frequency tones

(Figure 1B) with rise/fall times of 0 ms and were presented to subjects at

78 dB SPL via air-tube headphones.

Visual stimuli were ellipse-shaped images of high-contrast (80%) checker-

boards and faces (mean luminance 92 cd m�2) with 8.5� 3 6.5� dimensions

and were presented at 10� eccentricity along the 45� diagonals in lower left

and right visual fields (Figure 1B). Checkerboards had a check size of 0.85� 3

0.85� and were oriented vertically, tilted at 18� or �18� angles. Faces were of

a Caucasian male with neutral, happy, and angry expressions. Visual stimuli

were rear-projected on the screen, placed 60 cm ahead of the subject, with

a high-luminance LCD projector (NEC HIGHlite 8000Dsx+, modified for

luminance uniformity control), which was located outside the shielded room.

All stimuli were 350 ms in duration and were presented in random order, in-

dependent of sensory modality, with interstimulus interval (ISI) varied randomly

between 600 and 1200 ms (Figure 1A). The experiment for each subject in-

cluded eight runs of �3 min each. During a run, each stimulus in each side

was presented for six times, thus a total of 144 presentations (12 stimuli 3 6

repetitions 3 2 sides) were completed in each run. The task of a subject was

to maintain fixation on a central cross and respond, as accurately and quickly

as possible, to the target stimuli by extending the right index finger. A written

cue on the screen, at the beginning of each run, indicated the target stimuli. In

different runs, the targets were left visual field, right visual field, left ear, right

ear, checkerboard, face, low pitch, or high pitch (Figure 1C). Spatial selective

attention was explicitly manipulated in the runs where subjects were required

to respond whenever stimuli were presented in the targeted (left or right) part of

external space (either visual field or ear). In other runs, object selective atten-

tion was manipulated by asking subjects to respond to specific stimulus

category (e.g., face or high tone) presented on either the left or right (visual field

or ear).

Data Recording and Analysis

Details about the signal recording and processing procedures, eye position

control, and source analysis are provided as Supplemental Data. In brief, the

MEG signals were band-pass filtered at 1–800 Hz, cleaned from the eye blink

and cardiac artifacts using independent component analysis, and were aver-

aged with respect to the stimulus onset (�100 to 200 ms), for each run and

stimulus separately. Source analysis of averaged MEG signals for each subject

was performed using MFT followed by SPM and ECD modeling. The full details

of the MFT/SPM source analysis can be found elsewhere (Moradi et al., 2003;

Poghosyan et al., 2005; Poghosyan and Ioannides, 2007). For the ECD fit, two

modeling approaches were taken. In both cases, the minimal GOF was set to

80%. In the first approach, ECD analysis was guided by the results of MFT/

SPM source analysis, while in the second modeling approach we followed

the same procedures as the ones reported in earlier studies of visual spatial
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attention (Di Russo et al., 2003; Martinez et al., 2001; Noesselt et al., 2002).

Subject’s eye position during the experimental run was controlled using

electro-oculogram.

SUPPLEMENTAL DATA

The Supplemental Data for this article, which include Supplemental Experi-

mental Procedures and Figures, can be found online at http://www.neuron.

org/cgi/content/full/58/5/802/DC1/.
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